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Abstract

A new interaction energy integral method for the computation of mixed-mode stress intensity factors at the tips of

arbitrarily oriented cracks in functionally graded materials is described. In the method, interaction energy contour

integrals are defined and expressed in equivalent domain form. The interaction energy integrals involve products of the

actual fields, that arise from solution to the boundary value problem, with known auxiliary fields. The auxiliary stress

and displacement fields are chosen to be the asymptotic near-tip fields for a crack in a homogeneous material having the

same elastic constants as those found at the crack tip in the functionally graded material. The auxiliary strain fields are

obtained from the auxiliary stress fields using the constitutive relation for the functionally graded material. A conse-

quence of our choice for the auxiliary strain field is lack of compatibility which leads to extra terms in the domain

integrals that need to be evaluated for the sake of accuracy. The mixed-mode stress intensity factors are obtained from

the domain integrals as a post-processing step in the extended finite element method. To assess the accuracy of the

method, we consider the benchmark problems of an edge-cracked plate and an angled center crack for specimens with a

functional gradient in material properties. Excellent agreement is obtained between the numerical results and the an-

alytical solutions for both stress intensity factors in all cases. All numerical results for the stress intensity factors also

exhibit domain independence. The pertinent post-processing routines are provided for download via the world wide

web. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Advanced material systems are required to withstand highly adverse operating conditions experienced by
safety-critical structures such as aircraft fuselages, microelectronic devices, and bio-engineered implants.
Functionally graded materials (FGMs) offer the possibility of optimizing system performance through a
prescribed tailoring of microstructure and chemistry. For example, functionally graded composite layers
formed by varying constituent volume fraction and orientation exhibit substantially better mechanical
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response than those fabricated using conventional coating technology (Nadeau and Ferrari, 1999). In
contrast to the sharp bimaterial interfaces that commonly arise in traditional systems, the gradual change in
material properties throughout an FGM seems to improve their resistance to interfacial delamination and
fatigue crack growth (Takahashi et al., 1993). The extent to which material properties can be tailored to
guard against specific fracture and failure patterns is presently unknown. Such questions have motivated
much of the recent research into the numerical computation of fracture parameters and the simulation of
crack growth in FGMs.

For certain classes of FGMs, it has been shown that the asymptotic crack-tip stress and displacement
fields have the same form as those in homogeneous materials (Eischen, 1983). The effect of material
property variation manifests itself in the near-tip stress intensity factors as well as higher order terms in the
asymptotic expansion. An excellent review article on the subject has been written by Erdogan (1995).
Although some analytical expressions for stress intensity factors for cracks in FGMs have been derived,
investigations have been limited to semi-infinite or infinite domains and simple load cases. Analytical ex-
pressions for mixed-mode stress intensity factors have been recently obtained by Gu and Asaro (1997) for
cases where the crack tip was oriented perpendicular to the material gradient. A more general case of
material gradients with respect to crack orientation was obtained in Konda and Erdogan (1994), albeit for
infinite domains. In order to correlate fracture toughness data and to determine critical crack lengths in
more general specimens, a numerical method for determining mixed-mode stress intensity factors in FGMs
is obviously desirable.

From a numerical perspective, one of the challenges concerns the need for examining the limiting case of
a vanishing contour for the proper evaluation of the J-integral (Rice, 1968) for crack tips in FGMs (Honein
and Herrmann, 1997). This need stems from the fact that for some in-homogeneous materials and crack tip
orientations, the integrand in the J-integral is not divergence free. As a result, an evaluation of the integral
on finite contours will exhibit path dependence. To address this issue, Gu et al. (1999) proposed the use of a
sufficiently refined mesh near the crack tip, while Anlas et al. (2000) developed a modified path-domain
form of the J-integral. While these techniques were successful, the developments are limited to pure mode I
problems.

Among the available methods for calculating fracture parameters, the interaction energy integral method
(Yau et al., 1980) has emerged as a useful technique for the extraction of mixed-mode stress intensity
factors. The contour integrals are derived directly from the J-integral by considering an additive compo-
sition of the existing fields with a judicious choice of known auxiliary fields. For the purpose of post-
processing finite element solutions, the contour integrals are typically recast as equivalent domain integrals
over a finite region surrounding the crack tip. This process removes the need to precisely capture the details
of the singular fields near the crack tip, and the approach has been shown to be well suited for a wide class
of fracture problems. Nakamura (1991) employed this method to determine mixed-mode stress intensity
factors along straight, three-dimensional bimaterial interface cracks. More recently, the same approach has
been successfully applied to curved three-dimensional bimaterial interface cracks (Gosz et al., 1998), and
through-cracks in Mindlin–Reissner plates (Dolbow et al., 2000b).

In the present paper, we consider the plane problem of an arbitrarily oriented crack in an FGM and
present an interaction energy integral method for extracting the mixed-mode stress intensity factors at the
crack tips. In the method, interaction energy contour integrals are defined and expressed in equivalent
domain form. The formulation is restricted to cracks in linearly elastic, isotropic bodies with smoothly
varying elastic moduli. An important step in the derivation of the domain form of the interaction energy
integral is the choice of appropriate auxiliary stress, strain, and displacement fields. Here we choose the
auxiliary stress and displacement fields to be the familiar asymptotic stress and displacement fields for a
crack in a homogeneous material. The elastic constants involved in the auxiliary displacement fields are
taken to be the local values found at the crack tip in the functionally graded material. The auxiliary strain
fields are obtained from the auxiliary stress fields using the constitutive relation for the functionally graded
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material. A consequence of our choice for the auxiliary fields is lack of compatibility between the auxiliary
strain and displacement fields. This leads to extra terms in the domain integrals that need to be evaluated
for the sake of accuracy. The mixed-mode stress intensity factors are obtained from the domain integrals as
a post-processing step in the extended finite element method (X-FEM).

During the review period for this article, our attention was called to an excellent paper by Kim and
Paulino (2002) examining various methods to evaluate mixed-mode stress intensity factors in FGMs. The
interaction energy integral was not derived or examined in their work, but the method presented in this
paper can best be compared to the J �

k -integrals. Indeed, we recover the J �
1 -integral if the auxiliary fields are

taken to be equal to the actual fields from the solution of the boundary value problem. However, the use of
interaction energy integrals have several advantages over the J �

k -integrals for FGMs. In particular, the
interaction energy integral does not require the evaluation of strain energy densities along the crack faces
(assuming they are traction-free). Another advantage is that the method automatically differentiates be-
tween the various stress intensity factors; no examination of the displacement fields along the crack faces is
necessary. Given these properties, we suggest that the interaction-energy integrals, in combination with the
enriched capabilities of the X-FEM, present an attractive alternative to the current state-of-the-art in this
field.

To outline the present paper, the derivation of the interaction energy contour integrals and their as-
sociated domain forms is presented in Section 2. Section 3 provides a problem statement for the present
fracture analysis of FGMs and a brief description of the X-FEM approximation. In Section 4, we present
several numerical examples. In particular, we consider the benchmark problem of an edge-cracked plate
with a functional gradient in material properties. Excellent agreement is obtained between the numerical
results and the analytical solution. Excellent agreement is also obtained for the case of a plate with an
inclined center crack, where the functional gradient affects both mixed-mode stress intensity factors. Im-
portantly, the numerical results for the stress intensity factors are shown to exhibit domain independence.
Finally, a summary and some concluding remarks are provided in Section 5. A web-link to a site containing
the post-processing routines for evaluation of the domain integrals is also provided.

2. The interaction energy integrals

In this section, we present the methodology for extracting mixed-mode stress intensity factors at the tips
of cracks in FGMs. Throughout, we assume that the material is isotropic and that the material properties
vary smoothly with position. In addition, we restrict our attention to plane problems and assume small
strain kinematics. Throughout, the summation convention is implied and the subscripts take on the values
1–2. A comma denotes partial differentiation with respect to the spatial variables.

We begin by considering a crack as shown in Fig. 1. A local orthogonal coordinate system is defined at
the crack tip such that the x1- and x2-axes lie parallel and normal to the crack faces respectively. Following
Nahta and Moran (1993), the general crack-tip contour integral for the measure L can be written as

L ¼ lim
C!0

nl

Z
C
Pljnj dC ð1Þ

for a general tensor field P. In the above, C is a contour surrounding the crack tip, nl are the components of
the local crack extension, and nj are the components of the unit outward normal to C. As an example, the
energy release rate G can obtained from the general crack-tip integral by letting nl be equal to a unit vector
pointing in the x1-direction and taking Plj to be Eshelby’s energy–momentum tensor (Eshelby, 1956);

G ¼ lim
C!0

Z
C
ðW d1j � rijui;1Þnj dC ð2Þ
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where W is the strain energy density, rij are the components of the Cauchy stress tensor, and ui are the
displacement components.

2.1. The interaction energy integral

Another crack-tip integral that is useful for extracting the individual stress intensity factors in mixed-
mode crack problems is the interaction energy integral. The interaction energy integral is also referred to as
the M-integral (see Yau et al., 1980). As its derivation for FGMs is formally similar to that for homoge-
neous materials, we provide only the key results herein. A detailed derivation can be found in Dolbow et al.
(2000a).

We denote the stress rij, strain �ij, and displacement ui fields stemming from the solution of the boundary
value problem of interest as the actual fields. We refer to a second set of fields denoted by uaux

i , �auxij , and raux
ij

as auxiliary fields, and define them in the next section. The interaction energy integral is obtained by
considering the sum of the actual and auxiliary fields in the expression for the energy release rate (2).
Through elementary algebraic manipulations, this yields

Gsum ¼ Gþ Gaux þ I ð3Þ

where Gaux is the energy release rate associated with the auxiliary fields, and

I ¼ lim
C!0

Z
C
ðrik�

aux
ik d1j � raux

ij ui;1 � rijuaux
i;1 Þnj dC ð4Þ

is called the interaction energy integral. For the subsequent developments for FGMs, we call attention to an
important assumption in the derivation of I. Namely, the auxiliary stress and strain fields are assumed to be
related through the same elasticity tensor CijklðxÞ as the actual stress and strain fields, i.e.,

raux
ij ¼ CijklðxÞ�auxkl ; rij ¼ CijklðxÞ�kl ð5Þ

The reason the interaction integral is useful stems from the special relationship between the energy re-
lease rate and the stress intensity factors. In the limit as the contour C is shrunk onto the crack tip, the
contour integral (2) for the energy release rate asymptotes to the following value

G ¼ 1

E0
0

½K2
I þ K2

II
 ð6Þ

where KI and KII are the stress intensity factors associated with the actual fields, and E0
0 is defined as

Fig. 1. Contour surrounding a crack tip in a functionally graded material.
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E0
0 ¼

E0 for plane stress
E0=ð1� m20Þ for plane strain

�

Here, E0 and m0 are the local values of Young’s modulus and Poisson’s ratio at the crack tip.
The analogous relationship for the interaction integral is given by

I ¼ 2

E0
0

½KIKaux
I þ KIIKaux

II 
 ð7Þ

The stress intensity factors KI and KII associated with the actual fields can therefore be obtained through a
judicious choice of the auxiliary fields. For example, if we choose the auxiliary fields such that Kaux

I ¼ 1, and
Kaux

II ¼ 0, we have

KI ¼
E0

0

2
I ð8Þ

The mode II stress intensity factor is determined in a similar fashion. The interaction integral therefore
provides a straightforward means for decoupling KI and KII in a general mixed mode problem.

2.2. Choice of auxiliary fields

In order to evaluate the interaction energy integral defined in the previous section, it is advantageous for
computational purposes to convert the contour integral into an area integral. In order to derive the area
integral, we must first, however, define appropriate auxiliary fields. In the present paper where it is desired
to obtain the mixed-mode stress intensity factors for crack problems in FGMs, we choose the auxiliary
fields in such a manner so as to make the computation of the resulting area integrals as simple as possible.
To this end, we choose the auxiliary stress and displacement fields as follows:

uaux
i ¼ Kaux

I

2l0

ffiffiffiffiffiffi
r
2p

r
uI
i ðhÞ þ

Kaux
II

2l0

ffiffiffiffiffiffi
r
2p

r
uII
i ðhÞ ð9Þ

raux
ij ¼ Kaux

Iffiffiffiffiffiffiffi
2pr

p rI
ijðhÞ þ

Kaux
IIffiffiffiffiffiffiffi
2pr

p rII
ij ðhÞ ð10Þ

The fields defined by Eqs. (9) and (10) are the well known near-tip displacement and stress fields for cracks
in homogeneous solids. Here l0 is the local value of the shear modulus at the crack tip, and r and h are the
polar coordinates depicted in Fig. 1. The auxiliary strain field is chosen such that

�auxij ¼ SijklðxÞraux
kl ð11Þ

where SijklðxÞ is the compliance tensor of the functionally graded material.
It is important to recognize that in the definitions (9)–(11) of the auxiliary fields, the auxiliary stress fields

are in equilibrium; however, the auxiliary strain fields are not compatible with the auxiliary displacement
field. While the terms that give rise to a lack of compatibility are not sufficiently singular in the asymptotic
limit to contribute to the value of the interaction energy integral (7), it is important not to neglect these
terms in the evaluation of the equivalent area integrals. This is because the auxiliary fields are not just
defined asymptotically close to the crack tip but are extended into the domain. Very similar issues have been
borne out in the development of the interaction energy integral for other problems in fracture mechanics
(see Nahta and Moran, 1993; Gosz et al., 1998; Dolbow et al., 2000b).

There are other suitable choices for the auxiliary fields for extraction of stress intensity factors in FGMs.
A seemingly more natural choice of auxiliary fields would be to define the auxiliary displacement fields
according to Eq. (9) and then to choose a compatible auxiliary strain field from the symmetric gradient of
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the auxiliary displacement field. The auxiliary stress fields would then be defined as raux
ij ¼ CijklðxÞ�auxkl in

accordance with the constitutive law for the functionally graded material. This choice for the auxiliary
stress field, however, would not generally be in equilibrium, and additional terms would also arise in the
domain integrals. To see this, we recall that the equilibrium equations in the absence of body forces read
rij;j ¼ 0. Substituting in a compatible set of strain fields, and performing some additional manipulations
yields

raux
ij;j ¼ Cijklð0Þ�auxkl;j þ Cijkl;j ðxÞ�auxkl þ CijklðxÞ

�
� Cijklð0Þ

�
�auxkl;j

The first term above is identical to the homogeneous fields, and clearly vanishes to satisfy equilibrium.
Although some particular choices for the constitutive tensor C may result in the remaining terms also
vanishing, it is not difficult to argue that this would not hold in general.

Yet another choice would be to use purely homogeneous auxiliary fields, employing a constant con-
stitutive tensor such that (5) would no longer hold. The additional terms that arise in the domain integrals
from this choice of auxiliary fields would involve gradients of the actual stress fields. Given the present
context of a C0ðXÞ finite element approximation for the displacement field, this approach would be fairly
intractable. By contrast, the present approach only involves higher order gradients of the auxiliary fields. In
view of these arguments, we contend that the definitions (9)–(11) represent the best choice for the auxiliary
fields.

2.3. Domain form of the interaction energy integral

We now describe the process of converting the interaction energy contour integral into an equivalent
area integral. Assuming for simplicity that the crack faces are traction free, the contour integral (4) can be
rewritten as

I ¼ �
I
C
P1jmjqdC ð12Þ

where

P1j ¼ ðrik�
aux
ik d1j � rijuaux

i;1 � raux
ij ui;1Þ ð13Þ

and C ¼ C0 þ Cþ þ C� þ C is the closed contour defined in Fig. 2, mj are the components of the unit
outward normal to the contour, and q is a test function. We note that the portions of the contour Cþ and
C� coincide with the upper and lower crack faces, and that mj ¼ �nj on C. The area enclosed by the
contour is labeled A in the figure. The weight function q ¼ qðxÞ is defined to be sufficiently smooth in A and
takes on the following values on the boundaries of A:

q ¼ 0 on C0

1 on C

�
ð14Þ

Although there are a number of choices for the function q that satisfy the above criteria, the numerical
calculations are relatively insensitive as explored in Shih et al. (1986). Next, employing the divergence
theorem and taking the limit as the contour gamma is shrunk onto the crack tip, we obtain

I ¼ �
Z

X
P1jq;j dX �

Z
X
P1j;j qdX ð15Þ

where X is the area enclosed by the contour C0.
Because of the way in which we have defined the auxiliary fields as explained in the previous section, the

auxiliary strain field is incompatible. Therefore, for an FGM the tensor P defined by Eq. (13) is not di-
vergence free and the second integral above does not vanish. This is in marked contrast to the derivation of
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the domain form of the interaction energy integral for homogeneous materials, for which the tensor P is
divergence free. Through some algebraic manipulation and the use of the definition (13), the domain form
of the interaction energy integral is finally written as

I ¼
Z

X
ðrijuaux

i;1 þ raux
ij ui;1 � rik�

aux
ik d1jÞq;j dX þ

Z
X

rijðuaux
i;1j

h
� �auxij;1 Þ

i
qdX �

Z
X

Cijkl;1 �kl�
aux
ij

h i
qdX ð16Þ

We note that the second integral on the right hand side of the above arises due to the lack of compatibility
of the auxiliary strain field. The last integral on the right hand side arises because the elasticity tensor varies
with position in FGMs.

We close this section by remarking that when the auxiliary fields are taken to be equal to the actual fields,
the equivalent domain form of the J-integral can be obtained:

J ¼
Z

X
ðrijui;1 � W d1jÞq;j dX �

Z
X

1

2
�ijCijkl;1 �kl


 �
qdX ð17Þ

The above is equivalent to the energy release rate as defined by (2), and also to the stress intensity factors as
defined in (6). The same expression can be found in Anlas et al. (2000). We note, however, that the ad-
ditional terms employed in the contour form of the modified J-integral by Anlas et al. (2000) are in fact
unnecessary when deriving equivalent domain integrals, precisely because the contour C is shrunk onto the
crack tip.

3. Problem formulation

3.1. Problem statement

We consider the fractured body shown in Fig. 3 and assume planar deformations, allowing for a two-
dimensional representation of the domain X � R2 bounded by C. The boundary C consists of the disjoint
sets Cu, Ct, and Cc, such that C ¼ Cu [ Ct [ Cc. Displacements are prescribed on Cu, while tractions t are
imposed on Ct. In the present investigation, we also assume that the crack faces are traction free.

Fig. 2. Conventions at crack tip. Domain A is enclosed by C, Cþ, C�, and C0. Unit normal mj ¼ �nj on C.
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We now describe the variational boundary value problem of interest. The space of admissible dis-
placement fields is defined by

U ¼ fv 2 V : v ¼ �uu on Cug ð18Þ

where the space V is related to the regularity of the solution. The test function space is defined similarly as

U0 ¼ fv 2 V : v ¼ 0 on Cug ð19Þ

In the absence of body forces, the problem is to find the displacement field u 2 U such thatZ
X
�ðuÞ : C : �ðvÞdX ¼

Z
Ct

t � vdC 8v 2 U0 ð20Þ

In the above, � is the strain field and C is the fourth order elasticity tensor. We will assume that the material
is isotropic, and moreover that the Young’s modulus EðxÞ 2 C1ðXÞ and Poisson’s ratio mðxÞ 2 C1ðXÞ de-
scribe the character of the FGM.

3.2. Discretization with the X-FEM

We now briefly describe the extended finite element approximation to (20). The present application is
similar to that for modeling fracture in homogeneous materials, and so we do not present many of the
details provided in Dolbow (1999) and Mo€ees et al. (1999).

The Galerkin approximation to the weak form (20) begins by considering a finite dimensional subspace
Uh

0 of U0 spanned by N linearly independent functions in U0. We then pose the weak form in Uh
0 as follows:Z

X
�ðuhÞ : C : �ðvhÞdX ¼

Z
Ct

t � vh dC 8vh 2 Uh
0 ð21Þ

For the sake of concreteness, we now consider a rectangular domain X and a regular finite element trian-
gulation Th ¼ [nel

e¼1Te such that Th ¼ X as shown in Fig. 4. The characteristics of the FGM are modeled
simply by taking the material properties at Gaussian integration points according to the functional form

Fig. 3. An FGM with a crack subjected to loads.
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of C. For accurate integration of the exponential fields examined in Section 4, a 4� 4 quadrature rule is
sufficient to bound the integration error below the approximation error.

Fig. 4 depicts a crack whose geometry Cc is taken to be independent of the mesh. A standard finite
element basis for Uh

0 is constructed from the space of complete polynomials PkðTh
eÞ of order 6 k over each

element:

Uh
0 ¼ spanf/ig

N
i¼1 where f/i 2 ½C0ðThÞ
2 : /ijTh

e 2 ½PkðTh
eÞ


2
and /ijCu

¼ 0g ð22Þ

where the functions /iðxÞ are typically the nodal shape functions. Any linear combination of these func-
tions results in a continuous interpolation for the displacement field, and furthermore possesses poor ap-
proximation properties for representing the singular stress fields near crack tips. Standard finite element
approaches therefore construct ‘‘broken’’ meshes that conform to the crack geometry in order to represent
the discontinuity, and employ significant mesh refinement or special singular elements near crack tips.

The X-FEM takes an alternative approach by extending the standard finite element approximation. We
consider the set of overlapping subdomains defining the support of each nodal shape function and sets of
enrichment functions fEk

i g that possess desirable approximation properties over each subdomain. The
method follows the partition-of-unity framework (Melenk and Babu�sska, 1996) through multiplying the
enrichment functions by the nodal shape functions /i in order to ensure a conforming approximation. A
general X-FEM basis for Uh

0 is therefore

Uh
0 ¼ span f/ig [ f/iE

k
i g

nEi
k¼1

n on

i¼1
ð23Þ

where n is the number of standard nodal shape functions and nEi is the number of enrichment functions for
node i.

In practice, only those functions whose supports are in the vicinity of a feature of interest are enriched,
giving the approximation a local character. For example, the X-FEM approximation for a crack is given by

uhðxÞ ¼
X
i2I

ui/iðxÞ þ
X
l2L

bl/lðxÞHðxÞ þ
X
m2M1

/mðxÞ
X4

n¼1

cn1m F
n
1 ðr; hÞ

 !
þ
X
m2M2

/mðxÞ
X4

n¼1

cn2m F
n
2 ðr; hÞ

 !

ð24Þ

where I is the set of all nodes in the mesh, L is the set of nodes enriched with the generalized Heaviside
function HðxÞ, and ðM1;M2Þ are the sets of nodes enriched with the sets of near-tip functions F n

1 ðr; hÞ and

Fig. 4. An arbitrary crack placed on a mesh.
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F n
2 ðr; hÞ respectively. The set J is circled in Fig. 4 while the sets ðM1;M2Þ are squared. A detailed definition

of these sets, the criteria used to determine them numerically, and the construction of the enrichment
functions is provided in Dolbow et al. (2000a). Importantly, enrichment with the function HðxÞ allows
for the representation of an arbitrary crack discontinuity while the sets of near-tip functions F nðr; hÞ
capture the singular stress field.

Substitution of the approximation (24) into (21) and invoking the arbitrariness of the test functions
results in a linear algebraic equation for these degrees of freedom:

Kd ¼ f ð25Þ

where K is the elastic stiffness matrix and f is the vector of nodal forces. The vector of nodal unknowns d
gathers the degrees of freedom fui; bj; cl1k ; cl2k g.

For the numerical evaluation of the domain integrals presented in the previous section, it is necessary to
define a finite region A about the crack tip as well as a weight function q that vanishes on its boundary. In
the present investigation, we first determine the characteristic length of an element touched by the crack tip
and designate this quantity as hlocal. For two dimensional analysis, this quantity is calculated as the square
root of the element area. The domain A is then set to be all elements which have a node within a ball of
radius rd about the crack tip. The weight function q is taken to have a value of unity for all nodes within the
ball rd, and zero on the outer contour. The function is then easily interpolated within the elements using the
nodal shape functions. Additional details are provided in Mo€ees et al. (1999).

4. Numerical examples

In order to demonstrate the accuracy and utility of the domain form of the interaction energy integral,
we present a few numerical examples in this section. We first consider the case of an edge cracked plate with
a functional gradient in material properties. This problem has an analytical solution, and it is used to
demonstrate the importance of retaining the inequality terms in the interaction energy integral. We then
examine the case of a plate with an angled center crack and illustrate the effects of the functional gradient
on the mixed-mode stress intensity factors.

4.1. Edge cracked plate

We consider a rectangular plate of widthW and height 2h with an edge crack of length a subjected to a
far-field stress r0 as shown in Fig. 5. The coordinate system is taken to coincide with the left hand side of
the plate and the crack axis as shown. We assume that Poisson’s ratio is a constant and that the spatial
variation of Young’s modulus is given by

EðxÞ ¼ C1 e
C2x ð26Þ

where

C1 ¼ E1; C2 ¼ lnðE2=E1Þ=W

The problem models an FGM whose properties transition from material 1 to material 2. The quantities E1

and E2 in Eq. (26) are the Young’s moduli for the two different materials. Analytical solutions for the stress
intensity factor K1 for this problem as h ! 1 were derived in Erdogan and Wu (1997). In order to ap-
proximate an infinite boundary, we set h=W ¼ 10. In the following, all results are reported for a uniform
mesh of 32� 320 quadrilateral elements, and we did not find it necessary to apply symmetry conditions to
reduce the computational cost. This discretization was found to yield results with less than a 1% difference
to those obtained with a 16� 160 mesh, and so the reported results represent converged solutions.
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Stress intensity factors were calculated for crack lengths of a=W ¼ 0:2 and 0.4 and various ratios
ðE2=E1Þ. The results are summarized in Table 1. The table indicates a good comparison between the nu-
merical and analytical results. The error ranges from 0.2% to 2.2% over all trials. Results are reported using
a domain size generated from rd=hlocal ¼ 3:0. These observations are consistent with the results reported in
Anlas et al. (2000). We note that the error generally increases slightly as the Young’s moduli for the two
materials diverge, and is most likely the result of using a finite domain.

Using the same example problem, we now illustrate the domain-independence of the interaction energy
integral and the importance of retaining the extra terms in the domain integrals that arise due to the lack of
compatibility of the chosen auxiliary strain field. We repeat the calculations for the case when E2=E1 ¼ 10:0
and for various ratios of rd=hlocal. The results are provided in Fig. 6. Under purely mode I loading, a simple
relation exists between the J-integral and the stress intensity factor through (6):

KI ¼
ffiffiffiffiffiffiffiffi
E0

0J
p

ð27Þ

Fig. 5. Edge-cracked plate for the benchmark problems.

Table 1

Normalized KI values for various crack lengths and material properties

Crack length E2=E1 a=W ¼ 0:2 a=W ¼ 0:4

KI=r0
ffiffiffiffiffiffi
pa

p
Analytical Error (%) KI=r0

ffiffiffiffiffiffi
pa

p
Analytical Error (%)

0.1 1.279 1.2965 1.3 2.552 2.570 0.7

0.2 1.381 1.396 1.1 2.438 2.443 0.2

1.0 1.363 1.373 0.7 2.116 2.107 0.4

5.0 1.133 1.132 0.09 1.752 1.748 0.2

10.0 1.004 1.024 2.0 1.590 1.626 2.2
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The results clearly show good correlation between the domain forms of the J-integral (17) and the domain
form of the interaction energy integral (16). The difference between these two numerical values is less than
one percent in all cases tested. More importantly, the numerical results for both integrals exhibit domain
independence. By way of contrast, the values obtained using the I integral when the incompatibility terms
are neglected clearly exhibit domain dependence. Even for relatively small domains, the 11% error is sig-
nificant for this latter case.

4.2. Edge crack with shear loading

In order to demonstrate our capabilities for a general case with mixed-mode stress intensity factors, we
consider an edge cracked plate subjected to a shear load. We take the geometry shown in Fig. 5, with
2h=W ¼ 16=7, a=W ¼ 0:5, the bottom surface clamped and the top subjected to a positive shear traction s0.
The Young’s modulus is again taken to be variable with position as given by (26). All of the results reported
in this section were obtained using a uniform partition of 48� 96 quadrilateral elements. The results ob-
tained with this level of discretization were found to be within 1% of the results obtained with a 24� 48
mesh, and therefore represent converged quantities.

We note that for the four-point bending specimens examined by Gu and Asaro (1997), the second in-
tegral in (16) would vanish as the crack tip is oriented perpendicular to the gradient in Young’s modulus.
The problem examined here therefore represents a more general case of mixed-mode loading, and should
serve as a benchmark for future investigations into the mixed-mode fracture of FGMs.

For uniform material properties ðE2 ¼ E1Þ, the exact stress intensity factors are given by Yau et al.
(1980). While the geometry and loading is fairly simple, to our knowledge an analytical solution does not
exist for the functionally graded case. The numerical results shown in Fig. 7 are normalized by the exact
solution for homogeneous material properties. We recover the exact solution to within 1% for the ho-
mogeneous case. We also observe a decrease in both KI and KII as the ratio E2=E1 increases, which is
consistent with the results reported in Table 1.

Of further interest to crack propagation analysis is the influence of the material gradients on the phase
angle,

Fig. 6. Comparison of results for edge cracked plate with E2=E1 ¼ 10:0 for different domain sizes.
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w ¼ tan�1 KII

KI

ð28Þ

as it indicates the degree of mode-mixity at the crack tip. The variation in this quantity for the present case
is illustrated in Fig. 8, with results again normalized by the homogeneous value of 7.62�. We note from this
plot and the results reported in Fig. 7, that while both KI and KII vary by �40% over the range of ðE2=E1Þ
considered, the phase angle varies by <5%.

As an additional check on the present numerical results, we also compute the energy release rate by
evaluating the domain representation of the J-integral (17) and comparing its value to that obtained by
calculating (6) using KI and KII obtained from the domain form of the interaction energy integral (16). The
results are provided in Table 2, and indicate that these two values are within 1% for all cases tested.

Fig. 8. Phase angle for edge crack with shear load and functionally graded Young’s modulus E.

Fig. 7. Stress intensity factors for edge crack with shear load and functionally graded Young’s modulus E. The values have been

normalized by the exact solution for a uniform E.
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4.3. Plate with angled center crack

As a last example, stress intensity factors are calculated for the problem of a square plate with an angled
center crack as shown in Fig. 9. The plate is subjected to a far-field state of stress ryy , and KI and KII are
obtained as a function of the crack angle b. In this example, the plate dimensions are chosen to be W ¼ 20:0
in. The half crack length is taken to be a ¼ 1:0 in., and the same mesh of 60� 60 quadrilateral elements is
used for all calculations. This level of discretization was found to yield a converged solution (results were
within 1% of those for a 120� 120 grid).

In order to facilitate comparison with the analytical solution of Konda and Erdogan (1994), we take
Young’s modulus to vary exponentially as

EðxÞ ¼ E0 e
ax ð29Þ

Fig. 9. Square plate with angled center crack and functionally graded Young’s modulus EðxÞ. Results for both varying and constant

far-field stress ryy are presented.

Table 2

Normalized results for edge-cracked plate subjected to shear traction

E2=E1 KI KII E0
0G=ðK2

I þ K2
IIÞ

0.5 1.110 1.093 1.004

0.556 1.092 1.078 1.004

0.667 1.061 1.052 1.004

0.833 1.016 1.014 1.003

1.0 0.996 0.997 1.004

1.25 0.962 0.967 1.004

2.0 0.893 0.905 1.004

2.5 0.862 0.877 1.004

5.0 0.772 0.791 1.004

10.0 0.689 0.708 1.004
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where E0 is the modulus at the center of the crack. Poisson’s ratio is held fixed at 0.3, and we take E0 ¼ 1:0
Pa for the sake of simplicity.

We begin by examining the case where the applied stress also varies spatially as the above equation,
representing the case of a uniform applied strain at the boundary of the specimen. A comparison of the
numerical results to the analytical solution presented in Konda and Erdogan (1994) is provided in Table 3
for aa ¼ 0:25 and 0.5. Results for both stress intensity factors at both crack tips are reported for various
angles b=p. We remark that we have adopted the opposite convention from the above reference of mea-
suring the angle between the crack and material gradient. We observe excellent qualitative and quantitative
agreement between the numerical and analytical results provided in Table 6 of Konda and Erdogan (1994).
The error in the calculations ranges between less than 1% and 2%. The only exception is a 5% error for the
value of KIð�aÞ for aa ¼ 0:5 and b=p ¼ 0:4, but we note that both values are close to zero. The numerical
values appear to be more accurate than those reported in Kim and Paulino (2002), though this may be
attributable to the use of more total degrees of freedom in the present investigation. We also note that for
all crack orientations, the energy release rate calculated from the stress intensity factors through (6) was
found to be in excellent agreement with the measure of the domain form of the J-integral.

In the following, we also compare the numerical results to those for an infinite homogeneous plate sub-
jected to a uniform far-field stress, ryy ¼ r. The analytical solution for the stress intensity factors is given by

KI ¼ r
ffiffiffiffiffiffi
pa

p
cos2ðbÞ ð30Þ

KII ¼ r
ffiffiffiffiffiffi
pa

p
sinðbÞ cosðbÞ ð31Þ

The results for KI as a function of b are reported for three different values of aa in Fig. 10. Analogous
results for KII are shown in Fig. 11. In both plots, results are reported for the rightmost crack tip when
b ¼ 0, and KI and KII are normalized by r

ffiffiffiffiffiffi
pa

p
.

The numerical results exhibit some interesting features. Excellent accuracy is obtained for the homo-
geneous case, with errors less than a few percent. We note that an increase in a leads to an increase in the
mode I stress intensity factors at both crack tips. For the mode II stress intensity factors, our results in-
dicate that KII decreases with increasing material gradient, but the change from the homogeneous case is
much less significant. We also note that when b ¼ 90�, the crack is oriented parallel to the far-field traction,

Table 3

Comparison of numerical and analytical stress intensity factors for plate with angled center crack, exponentially varying Young’s

modulus, and ryy ¼ E0 e
ax

b=p KIðaÞ=
ffiffiffiffiffiffi
pa

p
Analytical KIð�aÞ=r0

ffiffiffiffiffiffi
pa

p
Analytical KIIðaÞ=

ffiffiffiffiffiffi
pa

p
Analytical KIIð�aÞ=

ffiffiffiffiffiffi
pa

p
Analytical

aa ¼ 0:25
�0.0 1.218 1.196 0.838 0.825 0.000 0.0 0.000 0.0

�0.1 1.099 1.081 0.761 0.750 �0.329 �0.321 �0.257 �0.254

�0.2 0.788 0.781 0.557 0.548 �0.524 �0.514 �0.424 �0.422

�0.3 0.415 0.414 0.295 0.290 �0.512 �0.504 �0.439 �0.437

�0.4 0.118 0.121 0.077 0.075 �0.306 �0.304 �0.282 �0.282

�0.5 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.0

aa ¼ 0:50

�0.0 1.445 1.424 0.681 0.674 0.000 0.0 0.000 0.0

�0.1 1.303 1.285 0.623 0.617 �0.353 �0.344 �0.213 �0.213

�0.2 0.930 0.925 0.467 0.460 �0.560 �0.548 �0.364 �0.365

�0.3 0.488 0.490 0.251 0.247 �0.540 �0.532 �0.396 �0.397

�0.4 0.142 0.146 0.062 0.059 �0.316 �0.314 �0.268 �0.269

�0.5 0.000 0.0 0.000 0.0 0.000 0.0 0.000 0.000
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and the gradients in material properties result in non-zero values for both KI and KII. This is in marked
contrast to the results for the uniform strain case presented in Table 3.

5. Summary and concluding remarks

In the present paper, domain representations of interaction energy integrals were derived for evaluating
mixed-mode stress intensity factors at the tips of arbitrarily oriented cracks in FGMs. The approach is

Fig. 11. Normalized mode II stress intensity factor for angled center crack.

Fig. 10. Normalized mode I stress intensity factor for angled center crack subjected to far-field stress ryy ¼ r for various gradients aa.
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applicable to the analysis of any FGM in which the form of the asymptotic near-tip fields match those of a
homogeneous material, and it does not require a detailed knowledge of the higher order terms. In the
derivation, an interaction energy contour integral was expressed in domain form and evaluated as a post-
processing step in the X-FEM. A key step in the derivation concerned the choice of auxiliary fields used to
separate mixed-mode stress intensity factors. We examined several different possible choices for the aux-
iliary fields and the associated consequences of incompatibilities in the resulting domain integrals. We
argued that a suitable choice is a solution consisting of the asymptotic stress and displacement fields, with
an incompatible strain field that satisfies the constitutive relationships. In the domain integrals, these in-
compatibilities and the gradients in material properties give rise to additional terms which vanish for
homogeneous materials.

In the numerical examples, excellent agreement between the numerical and analytical solutions was
obtained for the edge-cracked plate problem. Domain independence was observed for all cases considered.
Importantly, the results were in significant error when the incompatibility terms were ignored in the
evaluation of the domain integrals. For the more general example with mixed-mode loading, the calcula-
tions of the energy release rate using the interaction energy integral yielded consistent results with the
domain form of the J-integral. Gradients in material properties significantly affected both KI and KII, but
the phase angle was relatively unchanged. Finally, the last example of a center cracked plate provided
results that were in excellent agreement with published theoretical values.

We emphasize that much of the work presented in the paper was motivated by the need to numerically
simulate crack propagation in FGMs. This stipulation is of course limited to analyses where crack growth
can be reliably predicted from the interpretation of KI and KII. A robust and efficient numerical simulation
of crack growth in FGMs requires a method to determine mixed-mode stress intensity factors without
concern for domain dependence or sensitivity, and which preferably does not require user intervention. The
formulation presented herein satisfies all of these requirements. It is also worth pointing out that the present
approach may provide a means to investigate crack growth along bimaterial interfaces. Many such in-
terfaces are not ‘‘true’’ interfaces, i.e. due to the chemical bonding procedure employed during fabrication,
the interface may more closely resemble a thin layer across which the material gradients are rather steep.
The present approach can certainly be used to investigate crack growth in this thin region. We note,
however, that in the limit as the layer vanishes and a true bimaterial interface exists, the present approach is
not valid because the material properties at the crack tip are not single-valued. In addition to crack growth
studies, future work will focus on extending the present approach to problems involving FGMs subjected to
thermal loading.

All of the post-processing routines employed for the calculation of the interaction energy integral are
available at: http://ceelab4.egr.duke.edu/�dolbow/FGM/interact.html
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